$$
\begin{gathered}
\text { S.E.ETRX (II) (CBS) } \\
\text { Circuit theory }
\end{gathered}
$$

QP Code :
5208

(3 Hours)

[Total Marks :80
N.B. : (1) Question no. 1 is compulsory.
(2) Attempt any three questions out of remaining questions..
(3) Figures to the right indicate full marks.
(4) Assume suitable data if required.
(5) Use smith chart for transmission line problem.

1. (a) The constants of a transmission lines are
$\mathrm{R}-6 / \mathrm{km}, \mathrm{L}=2.2 \mathrm{mH} / \mathrm{km}$
$\mathrm{G}=0.25 \times 10^{-6} \mathrm{mho} / \mathrm{km} \quad \mathrm{C}=0.005 \times 10^{-5} \mathrm{~F} / \mathrm{km}$
Determine the characteristic impedance propagation constant phase constant and attenuation constant at 1 KHz
(b) Obtain the expression for $i(t)$ if switch is closed at $t=0$ If $v(t)$ is $工(t)=\operatorname{ramp} 5$ signal

(c) Check whether the polynomial jehurwitz or not by continued fraction method.
(d) Find out $\frac{\mathrm{V} 2}{\mathrm{~V} 1}$ for the following n / w given below.

[TURN OVER

QP Code : 5208

2. (a) Find the voltage across 5Ω resistor in the network shown below. If $K=0.8$ is coefficient of coupling

(b) In the circuit shown, find out the expression for voltage $\mathrm{V}(t)$ across capacitor for $t>0$ At $t=0$ Switch is closed.

(c) Define ABCD parameters for the two port network hence obtain condition for symmetry
3. (a) Find $i, \frac{d i}{d t}$ and $\frac{d^{2} i}{d t^{2}} \frac{(1) t}{}=0^{+}$in the circuit given below. Switch is changed from position 1 te 2 at $t=0$

(b) Compare and Obtain Foster I and Foster-II of the following RC impedance function.

$$
Z(S)=\frac{2(S+2)(S+4)}{(S+1)(S+3)}
$$

(c) Obtain causer form I of LC network

$$
Z(s)=\frac{\left(s^{2}+4\right)\left(s^{2}+16\right)}{s\left(s^{2}+9\right)}
$$

4. (a) Derive the characteristic equation of a transmission line alga obtain $\alpha \beta \gamma 8$ of the transmission line
(b) Derive the relation for nominal impedance and cut off frequency for a constant 4 k low pass filter.
(c) A network and its pole zero diagram are shown in fig. Determine the values of R, L, C if $Z(0)=1$

5. (a) Ofteck whether the following functions are PRF or not
(i) $\quad F(S)=\frac{S(S+3)(S+5)}{(S+1)(S+4)}$
(ii) $\quad F(S)=\frac{S^{3}+6 S^{2}+7 S+3}{S^{2}+2 S+1}$
(b) Find the current I_{x} using superposition theorem.

(c) The current $\mathrm{I}(\mathrm{S})=\frac{2 \mathrm{~S}}{(\mathrm{~S}+1)(\mathrm{S}+2)}$ plot the pole zero patter in plane hence 6 obtain $i(t)$ by finding out residues by graphical method.
6. (a) The characteristic impedance of a high frequency line in 100Ω. If it is terminated 8 by a load impedance of $100+j 100 \Omega$ Using smithichart find out (i) VSWR
 load (iv) VSWR minimum and VSWR maximum away from the load.
(b) For the network shown and find out $\frac{\frac{V_{i}}{I_{1}}}{}$ and $\frac{V_{2}}{I_{1}}$

(c) Find out Theverin's equivalent network

